190 research outputs found

    Control systems integration for enhanced vehicle dynamics

    Get PDF
    This paper deals with improving comfort and handling for a ground vehicle through the coordinated control of different active systems available in passenger cars, e.g., electronic stability control, active roll control and engine torque control. The authors first describe separate control systems, each with its logic, showing advantages and limits, then propose various possible integrations, aiming at exploiting the benefits of a coordinated approach. Finally, the proposed control logics are tested on a vehicle model: simulation results prove the effectiveness of the approach in improving vehicle response during typical handling maneuver

    An Intelligent Predictive Algorithm for the Anti-Rollover Prevention of Heavy Vehicles for Off-Road Applications

    Get PDF
    Rollover detection and prevention are among the most critical aspects affecting the stability and safety assessment of heavy vehicles, especially for off-road driving applications. This topic has been studied in the past and analyzed in depth in terms of vehicle modelling and control algorithms design able to prevent the rollover risk. However, it still represents a serious problem for automotive carmakers due to the huge counts among the main causes for traffic accidents. The risk also becomes more challenging to predict for off-road heavy vehicles, for which the incipient rollover might be triggered by external factors, i.e., road irregularities, bank angles as well as by aggressive input from the driver. The recent advances in road profile measurement and estimation systems make road-preview-based algorithms a viable solution for the rollover detection. This paper describes a model-based formulation to analytically evaluate the load transfer dynamics and its variation due to the presence of road perturbations, i.e., road bank angle and irregularities. An algorithm to detect and predict the rollover risk for heavy vehicles is also presented, even in presence of irregular road profiles, with the calculation of the ISO-LTR Predictive Time through the Phase-Plane analysis. Furthermore, the artificial intelligence techniques, based on the recurrent neural network approach, is also presented as a preliminary solution for a realistic implementation of the methodology. The paper finally assess the efficacy of the proposed rollover predictive algorithm by providing numerical results from the simulation of the most severe maneuvers in realistic off-road driving scenarios, also demonstrating its promising predictive capabilities

    Torsional Oscillations in Automotive Transmissions: Experimental Analysis and Modelling

    Get PDF
    The paper investigates the torsional oscillations of an automotive transmission system by means of an experimental test bench used to validate the proposed lumped parameter model. The rig consists of a Dual Clutch Transmission (DCT) and a Manual Transmission (MT) connected through the respective output shafts, while the excitation is provided by two electric motors, which are controlled in speed or torque.The experimental analysis includes the measurement of the external torques, applied by the two electric motors to the mechanical system, and the measurement of the system response in terms of angular speeds at different positions along the transmission line. The frequency response of the system is estimated from the experimental data and compared with the results of a 5-degree-of-freedom lumped parameter model, which proves to be adequate to describe the dynamic behaviour of the system up to a frequency of 200 Hz.The comparison between simulated results and experimental data shows good agreement, so the model can be used to predict the torsional vibrations of the transmission system in the linear field. Moreover, the effects of the nonlinearities associated with the mean value of the excitations are shown. Finally the influence of the selected gear ratio on the experimental frequency response is discussed

    transient response and frequency domain analysis of an electrically variable transmission

    Get PDF
    This article deals with the dynamic behavior of a passenger car equipped with an electrically variable transmission, which is analyzed both in time and frequency domains. After deriving the dynamic equations in the state-space form for both open- and closed-loop systems, a methodology for objectively evaluating the drivability of this over-actuated system is proposed. Several simulation results are presented with the aim of highlighting the transient response to fast engine torque changes and the effect of the generator speed controller calibration on the system dynamics. Moreover, the influence of the ratio between electrical and thermal power on the frequency response is discussed. The proposed analysis, which is based on a simple static torque split between internal combustion engine and propulsion electric motor, depicts the dynamic signature of the electrically variable transmission powertrain system, without any additional drivability filter. Hence, these results can constitute the base for the design of dynamic torque splitting aimed at optimizing the longitudinal vehicle response to the driver's acceleration demand

    Electro-mechanical transmission modelling for series-hybrid tracked tanks

    Get PDF
    This paper describes a mathematical model and presents the dynamic analysis of a series-hybrid tracked tank driven by two electric motors, one devoted to propulsion (PM) and the other to steering (SM). A double differential mechanism is adopted to electrically produce the speed difference between the tracks required for skid steering. In this paper, this specific transmission is called Electro-Mechanical Transmission (EMT). The EMT model supports the steering motor control strategy definition and the electric motor size optimisation. Dynamic simulations applied to a 55 ton main battle tank are shown and discussed to validate the obtained result

    Drivability enhancement and transient emission reduction for a mild hybrid diesel-electric truck

    Get PDF
    This paper deals with modelling and control methodologies applied to a heavy truck equipped with a parallel hybrid electric drivetrain. The actuator redundancy, typical of the mild-hybrid vehicle configuration, allows the powertrain control system to enhance the vehicle drivability, in terms of smooth driving and promptness, while reducing transient diesel engine emissions, in comparison with conventional pure thermal engine vehicles. The electric motor, characterised by a high-bandwidth torque control, is here utilised not only to dampen the driveline oscillations that arise during rapid torque transients, e.g., when the driver accelerates the vehicle at full load in low gears, but also to keep the engine working with slow torque gradients, as required by transient emission reduction strategies. The driveline is modelled by lumped parameters, considering also the damping effects of the tyres. A detailed non-linear model is used as reference for the performance comparison of different simplified linear models. The best linear model is selected and used for the design of a LQR-based closed-loop controller aiming at reducing the driveline torsional vibrations. The regulation task (active vibration damping) is separated from the distribution task (torque splitting between the two motors

    Experimental analysis and modeling of transmission torsional vibrations

    Get PDF
    In this article, the torsional vibrations of a transmission system installed on a test rig are investigated. The transmission system comprises a Dual Clutch Transmission (DCT) and a Manual Transmission (MT) interconnected via their output shafts. The excitation of the dynamic system is performed by two electric motors which ensure an accurate control of the speed or torque. The analysis includes the measurement of the external torques, applied by the two electric motors to the mechanical system, and the measurement of the system response in terms of angular speeds at different positions along the transmission line. The frequency response of the system is estimated from the experimental data and compared with the simulation results of a 4-DOF lumped parameter model, which proved adequate to describe the dynamic behavior of the system up to a frequency of 100Hz. A good match between simulation and experimental results is shown. Therefore, the model can be used to predict the torsional vibration of the transmission system under test when it behaves linearly

    Passenger car active braking system: Pressure control design and experimental results (part II)

    Get PDF
    This paper deals with the design of a brake caliper pressure controller for a conventional anti-lock braking system/electronic stability control system and the experimental validation of its tracking performances. The analysis of the hydraulic plant, carried out in part I of this two-part study, is here utilized to develop the control algorithm. The control strategy is based on a feed-forward and a proportional integral controller through pulse width modulation with a constant frequency and variable duty cycle. The feed-forward contribution requires modeling of the nonlinear openloop system behavior which has been experimentally identified and described through two-dimensional maps: the inputs are the duty cycle applied to the electrovalves and the pressure drop across their orifice, while the output is the pressure gradient in the brake caliper. These maps, obtained for inlet and outlet valves, are used to set the feed-forward term. Finally a proportional integral controller is designed to reject external disturbances and compensate for model uncertainties. A brake system test rig, described in part I, is used for building inverse maps and validating the proposed control logic. Different reference pressure profiles are used to experimentally verify the control tracking performances

    Drivability analysis of through-the-road-parallel hybrid vehicles

    Get PDF
    In the last decade, Hybrid Electric Vehicles (HEVs) have spread worldwide due to their capability to reduce fuel consumption. Several studies focused on the optimisation of the energy management system of hybrid vehicles are available in literature, whilst there are few articles dealing with the drivability and the dynamics of these new powertrain systems. In this paper a ‘Through-the-Road-Parallel HEV' is analysed. This architecture is composed of an internal combustion engine mounted on the front axle and an electric motor powering the rear one. These two powertrains are not directly connected to each other, as the parallel configuration is implemented through the road-tyre force interaction. The main purpose of this paper is the drivability analysis of this layout of HEVs, using linearised mathematical models in both time (i.e. vehicle response during tip-in tests) and frequency domain (i.e. frequency response functions), considering the effect of the engaged gear ratio. The differences from a traditional Front-Wheel-Drive (FWD) configuration are subsequently highlighted. Furthermore, the authors compare different linearised dynamic models, with an increasing number of degrees of freedom, in order to assess which model represents the best compromise between complexity and quality of the results. Finally, a sensitivity analysis of the influence of the torque distribution between the front (thermal) and rear (electric) axles on vehicle drivability is carried out and presented in detai

    Passenger Car Active Braking System: Model and experimental validation (Part I)

    Get PDF
    This paper introduces a method to characterize the dynamic behavior of a normal production hydraulic brake system through experiments on a hardware-in-the-loop test bench for both modeling (part I) and control (part II) tasks. The activity is relative to the analysis, modeling, and control of anti-lock braking system and electronic stability control digital valves, and is aimed at obtaining reference tracking and disturbance-rejection performance similar to that achievable when using pressure proportional valves. The first part of this two-part study is focused on the development of a mathematical model that emulates the pressure dynamics inside a brake caliper when the inlet valve, outlet valve, and motor pump are controlled by digital or pulse width modulated signals. The model takes into account some inherent nonlinearities of these systems, e.g. the variation of fluid bulk modulus with pressure, while inlet and outlet valves together with the relay box are modeled as second-order systems with variable gains. The hardware-in-the-loop test rig is used for both parameter estimation and model validation; the parameters and model will be used for the control strategy development presented in the second part of this study
    • …
    corecore